Structured Principal Component Analysis
نویسندگان
چکیده
Many tasks involving high-dimensional data, such as face recognition, suffer from the curse of dimensionality: the number of training samples required to accurately learn a classifier increases exponentially with the dimensionality of the data. Structured Principal Component Analysis (SPCA) reduces the dimensionality of the data by choosing a small number of features to represent larger sets of similar features. The pairwise similarity of two features is measured using the Chi-squared distance between the joint distributions of the class and the data for each feature. SPCA groups the original features of the data into clusters of similar features using the Normalized Cut algorithm. As features in a cluster are similar and thus redundant, an entire cluster can be represented by a small number of Principal Components extracted from each cluster. SPCA method was tested on two face recognition databases, the Ekman and Friesen Pictures of Facial Affect Database and the Yale Face Database, with encouraging results.
منابع مشابه
Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملPrincipal component analysis or factor analysis different wording or methodological fault?
This article has no abstract.
متن کاملDevelopment of a cell formation heuristic by considering realistic data using principal component analysis and Taguchi’s method
Over the last four decades of research, numerous cell formation algorithms have been developed and tested, still this research remains of interest to this day. Appropriate manufacturing cells formation is the first step in designing a cellular manufacturing system. In cellular manufacturing, consideration to manufacturing flexibility and productionrelated data is vital for cell formation....
متن کاملFeature reduction of hyperspectral images: Discriminant analysis and the first principal component
When the number of training samples is limited, feature reduction plays an important role in classification of hyperspectral images. In this paper, we propose a supervised feature extraction method based on discriminant analysis (DA) which uses the first principal component (PC1) to weight the scatter matrices. The proposed method, called DA-PC1, copes with the small sample size problem and has...
متن کاملAn Empirical Comparison between Grade of Membership and Principal Component Analysis
t is the purpose of this paper to contribute to the discussion initiated byWachter about the parallelism between principal component (PC) and atypological grade of membership (GoM) analysis. The author testedempirically the close relationship between both analysis in a lowdimensional framework comprising up to nine dichotomous variables and twotypologies. Our contribution to the subject is also...
متن کاملPrincipal Components Structured Models for Fault Isolation
This work proposes a method for fault isolation by means of the structured model characterization with isolation capability, and the residual generation through dynamic principal component analysis. Specifically, the characterization is obtained using graph theory tools, and is expressed in terms of known variables and subsets of constraints. Thus, in the absence of analytical explicit models, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002